73 research outputs found

    A splice intervention therapy for autosomal recessive juvenile Parkinson’s disease arising from Parkin mutations

    Get PDF
    Parkin-type autosomal recessive juvenile-onset Parkinson’s disease is caused by mutations in the PRKN gene and accounts for 50% of all autosomal recessive Parkinsonism cases. Parkin is a neuroprotective protein that has dual functions as an E3 ligase in the ubiquitin–proteasome system and as a transcriptional repressor of p53. While genomic deletions of PRKN exon 3 disrupt the mRNA reading frame and result in the loss of functional parkin protein, deletions of both exon 3 and 4 maintain the reading frame and are associated with a later onset, milder disease progression, indicating this particular isoform retains some function. Here, we describe in vitro evaluation of antisense oligomers that restore functional parkin expression in cells derived from a Parkinson’s patient carrying a heterozygous PRKN exon 3 deletion, by inducing exon 4 skipping to correct the reading frame. We show that the induced PRKN transcript is translated into a shorter but semi-functional parkin isoform able to be recruited to depolarised mitochondria, and also transcriptionally represses p53 expression. These results support the potential use of antisense oligomers as a disease-modifying treatment for selected pathogenic PRKN mutations

    Novel mutations found in individuals with adult-onset Pompe disease

    Get PDF
    Pompe disease, or glycogen storage disease II is a rare, progressive disease leading to skeletal muscle weakness due to deficiency of the acid α-1,4-glucosidase enzyme (GAA). The severity of disease and observed time of onset is subject to the various combinations of heterozygous GAA alleles. Here we have characterized two novel mutations: c.2074C>T and c.1910_1918del, and a previously reported c.1082C>G mutation of uncertain clinical significance. These mutations were found in three unrelated patients with adult-onset Pompe disease carrying the common c.-32-13T>G mutation. The c.2074 C>T nonsense mutation has obvious consequences on GAA expression but the c.1910_1918del (deletion of 3 amino acids) and c.1082C>G missense variants are more subtle DNA changes with catastrophic consequences on GAA activity. Molecular and clinical analyses from the three patients corresponded with the anticipated pathogenicity of each mutation

    Systematic approach to developing splice modulating antisense oligonucleotides

    Get PDF
    The process of pre-mRNA splicing is a common and fundamental step in the expression of most human genes. Alternative splicing, whereby different splice motifs and sites are recognised in a developmental and/or tissue-specific manner, contributes to genetic plasticity and diversity of gene expression. Redirecting pre-mRNA processing of various genes has now been validated as a viable clinical therapeutic strategy, providing treatments for Duchenne muscular dystrophy (inducing specific exon skipping) and spinal muscular atrophy (promoting exon retention). We have designed and evaluated over 5000 different antisense oligonucleotides to alter splicing of a variety of pre-mRNAs, from the longest known human pre-mRNA to shorter, exon-dense primary gene transcripts. Here, we present our guidelines for designing, evaluating and optimising splice switching antisense oligomers in vitro. These systematic approaches assess several critical factors such as the selection of target splicing motifs, choice of cells, various delivery reagents and crucial aspects of validating assays for the screening of antisense oligonucleotides composed of 2′-O-methyl modified bases on a phosphorothioate backbone

    Induction of cryptic pre-mRNA splice-switching by antisense oligonucleotides

    Get PDF
    Antisense oligomers (AOs) are increasingly being used to modulate RNA splicing in live cells, both for research and for the development of therapeutics. While the most common intended effect of these AOs is to induce skipping of whole exons, rare examples are emerging of AOs that induce skipping of only part of an exon, through activation of an internal cryptic splice site. In this report, we examined seven AO-induced cryptic splice sites in six genes. Five of these cryptic splice sites were discovered through our own experiments, and two originated from other published reports. We modelled the predicted effects of AO binding on the secondary structure of each of the RNA targets, and how these alterations would in turn affect the accessibility of the RNA to splice factors. We observed that a common predicted effect of AO binding was disruption of the exon definition signal within the exon’s excluded segment

    Advanced glycation end products as a biomarker for incisional hernia

    Get PDF
    Background: Incisional hernia is one of the most frequent complications after abdominal surgery, with incidences up to 30%. A reliable biomarker for the prediction of this complication is lacking. Advanced glycosylation end products (AGEs), also known as non-enzymatic collagen crosslinks, are correlated with aging, smoking, hyperglycemia, hyperlipidemia and oxidative stress. In this study the accumulation of AGEs and the relation between AGEs and incisional hernia were investigated. Materials and methods: In an explorato

    The Functional, Metabolic, and Anabolic Responses to Exercise Training in Renal Transplant and Hemodialysis Patients

    Get PDF
    BACKGROUND.: Exercise intolerance is common in hemodialysis (HD) and renal transplant (RTx) patients and is related to muscle weakness. Its pathogenesis may vary between these groups leading to a different response to exercise. The aim of the study was to compare intrinsic muscular parameters between HD and RTx patients and controls, and to assess the response to exercise training on exercise capacity and muscular structure and function in these groups. METHODS.: Quadriceps function (isokinetic dynamometry), body composition (dual-energy x-ray absorptiometry), and vastus lateralis muscle biopsies were analyzed before and after a 12-week lasting training-program in 35 RTx patients, 16 HD patients, and 21 healthy controls. RESULTS.: At baseline, myosin heavy chain (MyHC) isoform composition and enzyme activities were not different between the groups. VO2peak and muscle strength improved significantly and comparably over the training-period in RTx, HD patients and controls (ptime<0.05). The proportion of MyHC type I isoforms decreased (ptime<0.001) and type IIa MyHC isoforms increased (ptime<0.05). The 3-hydroxyacyl-CoA-dehydrogenase activity increased (ptime=0.052). Intrinsic muscular changes were not significantly different between groups. In the HD group, changes in lean body mass were significantly related to changes in muscle insulin-like growth factor (IGF)-II and IGF binding protein-3. CONCLUSIONS.: Abnormalities in metabolic enzyme activities or muscle fiber redistribution do not appear to be involved in muscle dysfunction in RTx and HD patients. Exercise training has comparable beneficial effects on functional and intrinsic muscular parameters in RTx patients, HD patients, and controls. In HD patients, the anabolic response to exercise training is related to changes in the muscle IGF system

    Complement Split Product C5a Mediates the Lipopolysaccharide‐Induced Mobilization of Cfu‐S and Haemopoietic Progenitor Cells, But Not the Mobilization Induced By Proteolytic Enzymes

    Get PDF
    Abstract. Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU‐s) as well as granulocyte‐macrophage progenitor cells (GM‐CFU) and the early progenitors of the erythroid lineage (E‐BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5‐deficient mice. the mobilization by C activators in these mice could be restored by injection of C5‐sufficient serum, suggesting a critical role for C5. The manner in which C5 was involved in the C activation‐mediated stem cell mobilization was studied using a serum transfer system. C5‐sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5‐sufficient and C5‐deficient mice. C5‐deficient serum was not able to do so. the resistance of the mobilizing principle to heat treatment (56°C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5‐deficient mice also induced mobilization of CFU‐s. Copyrigh

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an a-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulatio

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore